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ABSTRACT 

Fatigue t e s t s  were conducted on notched (K$ = 4)  fa t igue specimens 

of duplex annealed Ti-8Al- lMo- lV sheet material  (0.050 gage). 

t i o n a l  specimens were subjected t o  a single cycle of high nominal 

s t r e s s  (cal led s t r e s s  conditioning) p r i o r  t o  being t e s t ed  in  fatigue.  

Changes i n  fa t igue l i ves  as  compared t o  the i n i t i a l  t e s t s  were noted. 

Further t e s t s  were made i n  which specimens were exposed t o  temperature 

between the  s t r e s s  conditioning and fat igue t e s t s .  The three tempera- 

tu res  were laboratory ambient (approximately 70' F), 300° F, and 550' F. 

The changes i n  fa t igue l i f e  with exposure duration are  noted f o r  each 

Addi- 

temperature. 
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IV. INTRODUCTION 

During airplane f l i g h t s  a t  supersonic speeds, cer ta in  regions of 

Notable of 

I n  addition, normal f l i g h t  loads may 

the  airplane w i l l  become hot due t o  aerodynamic f r i c t ion .  

these regions i s  the  wing skin.  

induce residual  stresses a t  points of stress concentration i n  the  wing 

skin such as r i v e t  holes, cut-out panels f o r  i n t e r i o r  access, etc. .  It 

i s  generally accepted t h a t  the  residual  stress i n  such areas provides 

a beneficial  e f f ec t  on fat igue l i f e  i f  it i s  compressive. 

Almost a l l  of t he  l i t e ra ture  on the  various face ts  of res idual  

stress covers e i t h e r  room temperature behavior or the  behavior of 

res idual  stresses a t  and above 1000° F. 

temperature associated with flight a t  Mach 3 is  550' F (ref. 8), the  

l i t e r a t u r e  does not provide information about res idual  stress behavior 

i n  the temperature region of current in te res t .  

Since the  approximate wing 

The current project was i n i t i a t ed  t o  es tab l i sh  preliminary informa- 

t i o n  about the  e f f ec t  of moderately elevated temperature on the  fat igue 

l i f e  of specimens containing residual s t r e s s .  Notched (I$ = 4) speci- 

mens of a candidate material  for supersonic transport  use were used i n  

the  investigation. 

procedures. 

mined f o r  a given fat igue loading. 

nominal s t r e s s  w a s  applied t o  other specimens p r io r  t o  the  fatigue tes t  

(which process w i l l  be termed stress conditioning throughout t h i s  

repor t ) .  

d i t ioning was noted. For t he  t h i r d  phase, additional s t r e s s  conditioned 

The investigation consisted of three general 

I n  the  first, the fat igue l i f e  of the  specimen was deter- 

Secondly, a single cycle of high 

The resul tant  change i n  fa t igue l i ves  due t o  the  stress con- 
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specimens were subjected t o  elevated temperature exposure f o r  various 

durations p r io r  t o  the  fatigue test. 

cycle on the fat igue l i ves  o f t h e  s t r e s s  conditioned specimens was also 

noted and these fatigue lives were compared t o  the fat igue l i v e s  noted 

i n  the  f i r s t  two  steps. 

The e f fec t  of t he  temperature 

Although t h i s  procedure was indirect ,  it provided an adequate means 

for determining the e f fec t  of elevated temperature on residual  s t r e s s  

for t he  purposes of t h i s  investigation. 
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V. LIST OF SYMBOLS 

e 

E 

E' 

ES 

U P  

ks i  

KP 

KP ' 

yr 
N 

S 

TYS 

'r 

ultimate elongation of material measured on a 2-inch gage 

length after fracture, percent 

modulus of e l a s t i c i t y  of material for  t ens i l e  loading of 

v i rg in  specimen, ksi ( see f i g .  A-1) 

modulus of e l a s t i c i t y  of material for  unloading after pr ior  

t ens i l e  loading, ksi  (see f i g .  A-1)  

secant modulus of material f o r  t ens i l e  loading of v i rg in  

specimen, k s i  (see f ig .  A-1)  

secant modulus of material for  unloading after pr ior  t ens i l e  

loading, ksi  (see fig.  A-1) 

kilopound 

kilopound per square inch 

p l a s t i c  stress concentration fac tor  f o r  i n i t i a l  t ens i le  

loading of notched specimen 

p la s t i c  stress concentration factor  f o r  unloading after p r io r  

t ens i l e  loading 

theoret ical  e l a s t i c  stress concentration fac tor  

fatigue l i fe ,  cycles 

nominal applied stress, ks i  

tensi le  ultimate strength of material, ks i  

t ens i l e  yield strength of material a t  0.2 percent offset ,  k s i  

s t ra in ,  percent 

residual loca l  s t r a i n  a t  notch root, percent 
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~- ES 

0 

‘r 

s t r a i n  associated with secant modulus, ES, percent 

l oca l  stress a t  notch root, ks l  

residual l oca l  s t r e s s  a t  notch root, ksi 
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VI. LITERATrJmIiEvIEw 

The existence of residual stresses i n  metals i s  a well documented 

The l i t e r a t u r e  on the subject covers such subject (see bibliography). 

face ts  as the development, measurement, redis t r ibut ion and relaxation 

of res idual  stresses. Since the l i t e r a t u r e  covers a diverse f i e l d  of 

s i tuat ions i n  which residual  stresses occur, it seems helpful t o  

c lass i fy  the s i tuat ions and accompanying residual  s t resses  i n  a very 

general way. For t he  purpose of the ensuing discussion, the classif ica-  

t i on  consists of a separation of t h e  l i t e r a t u r e  i n t o  two broad cate- 

gories: 

introduced such as  machining, grinding, forming, etc., and (b) cases 

i n  which the residual s t resses  are  intent ional ly  introduced. T h i s  

t hes i s  w i l l  be concerned primarily srith the l a t t e r  category. 

(a )  cases i n  which the residual  stresses are  inadvertently 

The primary objective of purposely introducing residual  stresses 

in to  a structure i s  t o  improve the  fatigue resistance of the structure 

t o  i t s  service loadings. The improvement of fa t igue resistance i s  

accomplished by introducing compressive residual  s t resses  into t he  

fa t igue sensi t ive locations (regions of stress concentration) of the  

structure.  For a s t ructure  that experiences predcaninantly t ens i l e  

service loadings, t he  compressive residual  stress allows an improvement 

i n  fatigue resistance by causing an effect ive reduction of the service 

loadings due t o  the presence of the residual stress. 

A number of  researchers (refs. 1, 2, and 3 )  have shown thak t h e  

fat igue resistance of useful structures can be improved by introducing 

compressive residual  stresses in to  the  structure.  Heywood (ref. 1) 
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reported t h a t  the  fat igue l ives  of Meteor t a i lp l anes  can be increased 

fourfold i f  the  s t ruc ture  is preloaded t o  75 percent of i t s  ult imate 

s t a t i c  f a i l i n g  load (U.S.F.L.). Heywood a l s o  noted that  the fat igue 

l i v e s  of simulated s t ruc tu ra l  j o in t s  increased by fac tors  of up t o  t e n  

when t e s t ed  a f t e r  preloading. 

I n  a separate investigation a t  t he  Australian Defence Sc ien t i f ic  

Service Aeronautical Research Laboratories ( re fs .  2 and 3 ) ,  Ford, Payne, 

e t  al . ,  noted a fourfold increase of the  fa t igue  l i ves  of P-5D Mustang 

wings which had been preloaded i n  tension t o  between 83 and 90 percent 

of t h e i r  U.S.F.L. 

optimum increase i n  fa t igue l ives  of Mustang wings. 

The 83 t o  90 percent preload range provided the 

Other investigations (refs.  4, 5 ,  and 6) have been made of t h e  

effect  of rp.i&al s%ress on the fat.ig-ie l i ves  of simple notched speci- 

mens as opposed t o  r e a l  structures.  The r e su l t s  of these investigations 

a l so  show t h a t  fatigue character is t ics  may be improved by the  introduc- 

t i o n  of compressive residual  stresses.  

Rosenthal and Sines (ref. 4)  have shown t h a t  t he  fat igue l i m i t  

( a t  10 7 cycles) of specimens of 6 l s - T  was increased by approximately 

30 percent due t o  prestressing. These specimens were prestressed i n  

axial load and subsequently fatigue t e s t ed  i n  bending. 

Sines a l so  conducted the same type of tests on annealed specimens of 

61s. 

specimens w a s  much less than the e f f ec t  on the heat t rea ted  alloy. 

I n  another investigation, Taira and Murakami (ref. 5 )  report  a 

progressive increase i n  fatigue l i m i t  proportional t o  the  pres t ress  

Rosenthal and 

The ef fec t  of the prestress  on the  fat igue l i ves  of the annealed 
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magnitude f o r  specimens of medium carbon s t e e l  (S45C). 

Murakami concluded tha t  the residual  s t r e s s  introduced by prestressing 

was the  pr incipal  factor  responsible f o r  increasing the fat igue l i m i t .  

Taira and Elurakami also found by use of the X-ray back re f lec t ion  

technique t h a t  the compressive residual s t r e s s  introduced in to  t h e i r  

specimens relaxed progressively with fat igue cycling. The relaxation 

Taira anu 

of res idual  s t r e s s  was approximately 63 percent a f t e r  lo'( cycles a t  a 

maximum s t r e s s  j u s t  below t h e  fatigue l i m i t  of virgin specimens. At a 

s t r e s s  which caused f a i lu re  of the specimen in  10' cycles the relaxation 

6 was approximately 66 percent a t  10 

two  percentages, it seems t h a t  the  r a t e  of relaxation of the i n i t i a l  

res idual  s t r e s s  may depend on the  amplitude of the  fat igue s t r e s s .  

Even though the difference i n  the  above percentages i s  md.1, the data 

reported by Taira and Mura.kar;ii shov a consistent trend. 

cycles. On the bas i s  of the above 

A number of investigators have s ta ted tha t  the e f fec t  of res idual  

s t r e s s  on fatigue l i f e  i s  similar t o  the e f fec t  of mechanically applied 

mean s t r e s s .  

and Sinc la i r  (ref.  6) conducted t e s t s  on unnotched specimens of SAE 4340. 

Morrow and Sinc la i r  maintained constant s t r a i n  limits throughout t h e i r  

t e s t s  and noted tha t  the mean s t r e s s  decreased as a function of the  

number of applied s t r a in  cycles. 

cycling on the imposed s t ress  var ies  with the hardness of the  material  

being t e s t ed  fo r  applied s t resses  higher than the  fat igue l i m i t .  

s t resses  decreased f a s t e r  i n  the sof te r  materials. The observation was 

made tha t  the sof te r  material undergoes a larger  amount of p l a s t i c  

A s  a means of checking the degree of s imilar i ty ,  Morrow 

They also showed t h a t  t he  e f fec t  of 

The 
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s t r a i n  deformation per cycle and consequently accumulates more p l a s t i c  

s t r a i n  deformation during a given number of cycles; the  accumulation 

of p l a s t i c  s t r a i n  was proposed as the  mechanism which allowed the  mean 

s t r e s s  t o  decrease. 

The above discussions show the  amount of e f fo r t  t h a t  has been 

expended by researchers t o  learn the e f fec ts  of res idual  stress on 

fatigue.  This t hes i s  i s  intended t o  allow recognition of another 

in te res t ing  face t  of res idual  s t ress  behavior. 



.. 

V I I .  MATERIAL AND SPECIMEXS 

Material 

The material used i n  t h i s  invest igat ion was Ti-BM-1Mo-lV titanium 

al loy i n  the duplex annealed condition. The duplex annealing procedure 

consists of heating t o  1450° F f o r  8 hours, furnace cooling, heating t o  

1450' F f o r  15 minutes and air cooling. 

to  the  material  a f t e r  ro l l i ng  t o  sheet form. 

the manufacturer were of 0.05O-inch nominal thickness. 

the material. properties pertinent t o  the investigation. 

The heat treatment i s  applied 

A l l  sheets supplied by 

Table I l is ts  

Specimens 

The configurations of t e s t  specimens are given i n  f igures  1 and 2. 

Figure l (a )  shows the configwEt. inE used t o  obtain t h e  srdinsry tens i le  

data: ult imate t e n s i l e  strength, 0.2 percent of fse t  yield strength and 

elongation. Figure l(b) shows the  configuration used t o  obtain s t ress -  

s t r a i n  data  of the type used t o  make calculations of loca l  stress. 

Specimens l ( a )  and l ( b )  are  basical ly  the same except tha t  l ( b )  has a 

shorter t e s t  section to  increase the buckling strength of the specimen 

during compressive loading. 

fa t igue specimen. 

same minimum radius. 

notch w a s  determined by using the procedure developed by McEvily e t  ail. 

(ref. 7) and has a t h e o r e t i c d  e l a s t i c  s t r e s s  concentration factor,  

f igure 2 gives the configuration of the 

The notch configuration represents an e l l i p se  of the 

The configuration of the simulated e l l i p t i c a l  

%, of 4. 

The radii at  the ends of the notch were made by successively 

increasing the  d r i l l  s ize  by increments of 0.003 inch s ta r t ing  with a 



.. 

No. 35 (0.1100-inch) d r i l l .  

the d r i l l i n g  operations were removed by ro ta t ing  a conically shaped 

rubber abrasive composite l i gh t ly  against the edges of the d r i l l e d  

holes. 

around the edges of the notch. 

The small d r i l l i n g  burrs remaining a f t e r  

The deburring operation resul ted i n  a 0.002 t o  0.003-inch radius 
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VIII. TESTING EQUIPMENT AND EXPERIMENTAL PROCEDURE 

Tests f o r  determining t h e  t e n s i l e  properties of t he  material  were 

conducted i n  a 120-kip universal t e s t ing  machine having a load c e l l  i n  

series with the  spechen ( f ig .  l(a)). Stress-s t ra in  curves were auto- 

matically plot ted by means of an x-y recorder. A s igna l  from the  load 

c e l l  was used t o  actuate the  s t r e s s  axis on the recorder. The s t r a i n  

axis was fed by the  output of a d i f f e r e n t i a l  transformer (2-inch gage 

length) attached t o  the specimen. 

men was determined by measuring the  distance a f t e r  f rac ture  between 

gr id  l ines  placed on the specimen before the t e s t .  A l l  t ens i le  and 

fa t igue  t e s t s  were conducted at  room temperature. 

The ultimate elongation of the speci- 

Fatigue t e s t s  and cycl ic  s t ress-s t ra in  determinations were con- 

ducted i n  a hydraulically actuated machine i n  which loads were controlled 

through a closed-loop servo system. 

i s  shown i n  figure 3 and a picture  i s  presented i n  f igure 4. 

amplitudes a re  adjustable by means of the electronic  s ignal  taken from 

variable  res i s tors .  These variable r e s i s to r s  a re  hereaf ter  called 

"load pots.'' The t w o  alternating-load pots can be preset  t o  allow 

accurate loading of the t e s t  specimen f ran  the first cycle of the t e s t .  

The mean-load i s  determined by a t h i r d  adjustable pot set t ing.  

s igna l  from one of the alternating-load pots adds t o  tha t  from the  mean- 

load pot and the other subtracts from it. All th ree  of the pots are  

cal ibrated t o  the  s t r a i n  gaged weighbar t o  allow ver i f ica t ion  of loading 

accuracy. 

A schematic diagram of the machine 

Load 

The 

For the present t e s t s ,  a 10-kip capacity weighbar was used. 
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The accuracy of loading by means of the above equipment i s  estimated 

t o  be within f l 5  pounds or t0.15 percent. 

The t e s t i n g  machine may be operated i n  e i the r  a manual or an auto- 

matic mode. For fa t igue t e s t s  t he  machine was operated i n  the automatic 

mode. For operation i n  the automatic mode, the electronic  s ignal  (load 

cmmand) from one of the alternating-load pots operates the  servo valve 

in the  appropriate direct ion which causes loading t o  be applied t o  the  

specimen and weighbar v ia  the  hydraulic cylinder. 

the  weighbar increases, the output s ignal  from one of t he  s t r a i n  gage 

bridges (feedback s ignal)  a lso increases. That s ignal  i s  added alge- 

b ra i ca l ly  t o  t h e  load command which i s  of opposite polarity.  

feedback s ignal  and the load command are  of t he  same absolute value, the  

nu l l  detector emits a s ignal  activating the solid-state switch. A t  

t h a t  time the  other alternating-load pot i s  activated. The s ignal  from 

the  newly selected pot actuates the servo valve i n  the opposite direc- 

t ion .  The t e s t  thus proceeds by sequential selection of alternating- 

load pots. 

A s  the  loading on 

When the 

I n  manual mode the machine nay be used t o  apply s t a t i c  loads t o  

the  test specimen. 

constant value or manually varied i n  some pa t te rn  a t  the discretion of 

t he  operator. The machine was used i n  t h i s  way t o  obtain the cyclic 

s t ress -s t ra in  data which will be discussed a t  a l a t e r  point. 

f o r  these tests were of the type shown i n  figure l ( b ) .  

t o  use guide p la tes  with the specimens t o  prevent buckling under com- 

pressive loads. 

I n  t h i s  mode the  loading may be maintained a t  a 

Specimens 

It was necessary 

The guide plates consisted of two 1/4-inch-thick 
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aluminum plates .  The p la tes  were shimmed apart  a t  t h e i r  edges by an 

amount s l i gh t ly  greater than the specimen thickness and were held 

together by a row of bo l t s  along each v e r t i c a l  edge. 

l ined  on the  inside with oiled paper t o  allow a minimum of f r i c t i o n  

between the p l a t e s  and the specimen. 

t he  p l a t e s  i n  the region of the specimen t e s t  section t o  allow passage 

of s t r a i n  gage leads from the specimen t o  t h e  s t r a i n  monitoring equip- 

ment. The s t r a i n  vas measured on a commercial null-balancing indicator  

which read d i rec t ly  i n  microinches of s t ra in .  

incrementally by means of the  t e s t  machine. 

then p lo t ted  t o  give the desired s t ress -s t ra in  curve. 

The p l a t e s  were 

Access holes were provided through 

Loading was applied 

The resultant data were 

As mentioned e a r l i e r ,  the  present work i s  an investigation of the  

e f fec t  of elevated temFerature exposure on the fatigue l i f e  of specimens 

containing residual  s t ress .  

were conducted a t  a constant amplitude s t r e s s  range of 0-30 ks i .  

Generally, f i ve  specimens were t e s t ed  for each t e s t  condition. The data 

shown i n  subsequent figures show the  sca t t e r  limits ( t i c k  marks) and the  

geanetric mean l i f e  (symbol) of the  t e s t s .  

A l l  fa t igue t e s t s  f o r  t h i s  investigation 

The first step was t o  determine the  mean fatigue l i f e  a t  room 

temperature of specimens a t  the stress range of 0-50 ksi .  The data  thus 

obtained serve as a reference point fo r  comparison with subsequent t e s t  

resu l t s .  For the  second step, a single cycle of high nominal s t r e s s  

(axial tension o r  compression) was applied t o  other specimens which were 

subsequently tes ted  i n  fatigue. 

Ngh stress cycle w i l l  be referred t o  a s  the conditioning of the  

specimens. 

Hereafter the application of t he  i n i t i a l  
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A s  w i l l  be discussed i n  a l a t e r  section, the  conditioning of the  

spechens produced a significant e f fec t  on the  fat igue l i fe .  

specimens conditioned by application of a 100-ksi stress cycle showed 

the  greatest effect  of the  conditioning. 

mens subjected t o  the  100-ksi conditioning treatment were used i n  the  

t h i r d  (elevated temperature) phase of the  investigation. 

tu res  were used i n  t h i s  par t  of the investigation: 

ambient (approximately 70' F) was selected t o  determine the  s t a b i l i t y  

of the induced residual s t resses  i n  an ordinary temperature environ- 

ment, (2)  300' F, and ( 3 )  530' F since these a re  the  approximate 

s t ruc tura l  temperatures associated with f l i g h t  a t  Mach 2 and Mach 3, 

respectively (ref. 8). 

Those 

For that reason, only speci- 

Three tempera- 

(1) laboratory 

Specimen temperatures were  achieved by removing them Prm. the t e s t  

machine a f te r  application of the conditioning cycle. Those specimens 

heated fo r  l e s s  than 20 hours were then placed i n  a preheated "furnace" 

of the type shown i n  f igure 5 .  A dummy specimen was put i n  t h e  furnace 

during the  heat-up and a f t e r  conditioning of the tes t  specimen, the 

dummy was removed a s  the tes t  specimen was inserted. 

heated f o r  20 hours o r  more were heated i n  an a i r  c i rculat ing heat 

treafment oven and  ere placed there  a f t e r  application of the condi- 

t ion ing  cycle. I n  e i the r  case the  e r ror  i n  applied temperature from 

t h a t  desired was within 210' F. 

of t h e  above temperatures was 30 days. 

Those specimens 

The longest time of exposure t o  each 
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M* RESULTS AND DISCUSSION 

The e f f ec t  of specimen conditioning on fatigue l i f e  i s  shown i n  f ig-  

"he data point i n  figure 6 p lo t ted  a t  zero conditioning stress i s  ure  6. 

t he  i n i t i a l  reference point.  No conditioning cycles of magnitudes 

between zero and 50 k s i  were applied since magnitudes smaller than t h e  

maximum fatigue stress can be expected t o  have no effect .  

data  points  were obtained by conditioning the  specimens as indicated i n  

the  figure and subsequently f a i l i ng  the  specimens i n  fatigue.  

and number by t he  symbol a t  100 ksi indicate  t h a t  two specimens t e s t ed  

The remaining 

The arrow 

a t  t h a t  conditioning s t r e s s  did not f a i l  within 10' cycles. 

such specimens a re  ca l led  runouts. 

included i n  computations of geometric mean l i fe .  

data represented i n  f igure 6 i s  given as t ab le  II. 

Hereafter 

Data from runout specimens were  not 

A tabulation of t h e  

As may be seen from f i g u e  6, t e n s i l e  cond2tioning increased t h e  

fa t igue  l i f e  and compressive conditioning decreased the  fat igue l i fe .  

Tensile conditioning stresses caused the  mater ia l  a t  t he  notch t o  y ie ld  

appreciably which resul ted i n  compressive res idua l  s t resses  a t  t he  notch 

when the  conditioning s t r e s s  was removed from the  specimen; la rger  

t e n s i l e  conditioning stresses produced la rger  compressive residual  

stresses. The compressive residual stress apparently depressed the 

l o c a l  s t r e s s  a t  the  notch during subsequent fa t igue cycling by an amount 

equal  t o  the difference of residual s t resses  i n  conditioned specimens 

as compared t o  specimens which were not conditioned. 

The res idua l  s t r e s s  could not be measured d i r ec t ly  due t o  the  small 

volume of p l a s t i c a l l y  strained mater ia l  a t  t he  notch. An estimation of 



- 21 - 
I -  

I -  

~- 

the residual  stress magnitude was made, however, by using the method of 

Crem and Hardrath (ref .  9). 

Table III presents the  maximum and residual-local s t resses  (om= 

ur, respectively) calculated by this method f o r  each of t h e  conditioning 

stress leve ls  used. 

associated with the notch stresses.  The s t r a ins  were read from a s t ress-  

s t r a i n  curve a t  the calculated stress. 

The method is  reviewed i n  Appendix A. 

and 

Also given i n  tab le  I11 are  the  notch s t r a ins  

The same method was used t o  calculate  the  loca l  s t r e s s  behavior 

occurring a t  the  notch du r ing the  fat igue t e s t .  

stress due t o  the  fat igue loading was added t o  the  residual  s t r e s s  

already present. 

l o c a l  s t r a ins  (again from a s t ress -s t ra in  curve) are  a l s o  presented In  

t ab le  111. 

I n  t h i s  case the  loca l  

The loca l  s t resses  thus determined and the  associated 

To ver i fy  the  above argument concerning loca l  s t r e s s  depression 

during fat igue due t o  the presence of t h e  residual  s t ress ,  the l o c a l  

s t r e s s  calculations from table  111 were p lo t ted  and are  given in f ig-  

ure 7. It may be seen f r o m  the f igure  t h a t  f o r  conditioning s t r e s s  

leve ls  above 70 ksi, the loca l  mean s t r e s s  becomes compressive even 

though the applied nominal s t ress  range i s  en t i r e ly  tens i le .  The 

r e l a t ive  depression of the local mean s t r e s s  wlth increasing magnitudes 

of conditioning s t r e s s  was considered t o  be the factor  responsible f o r  

increasing the  fat igue l i f e .  

Again, a s  i n  f igure 6, conditioning s t r e s s  leve ls  between zero and 

50 k s i  have no appreciable effect  on the loca l  s t r e s s  behavior during 

fatigue. It must a l so  be noted t h a t  the loca l  s t r e s s  behavior shown in 
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figure 7 i s  only s t r i c t l y  applicable ( a )  during the first cycle of the  

fatigue t e s t  and (b)  for  a 

of 0-30 ks i .  

KT = 4 specimen fatigued a t  a s t r e s s  range 

The fa t igue l i f e  data obtained a f t e r  exposing the  specimens con- 

dit ioned at  100 k s i  t o  elevated temperatures are  sham i n  f igure 8. 

Table IV i s  a tabulation of the same data. 

corresponding t o  zero exposure time a r e  plot ted the or ig ina l  reference 

fatigue l i f e  and the fatigue life a f t e r  application of a 100-ksi condi- 

t ion ing  s t r e s s  cycle. 

with arrows and numbers attached again indicate runouts whose l i v e s  

were not included f o r  computation of the geometric mean l i fe .  The time 

scale has been changed from l inear  t o  logarithmic a t  the 1-minute point 

so that a iiiore LsgibLc represerit8tizn cf the da t s  be rsde f e r  t h e  

very short  exposure times. 

t o  f a c i l i t a t e  reading the  figure. The three curves i n  the figure are  

labeled according t o  the exposure temperature. 

A t  the  left  side of figure 8 

Both points a re  taken from f igure 6. Symbols 

An addi t ional  scale of days has been added 

It was noted during the discussion of figure 6 tha t  sane specimens 

conditioned a t  100 k s i  did not f a i l  within 10 6 cycles. Since af'ter 

30 days of exposure a t  70' F other specimens a l so  ran out, it seems 

apparent t h a t  the residual  s t resses  induced by the conditioning were 

s tab le  f o r  t ha t  length of time. Another indication of the s t a b i l i t y  

was t h a t  the  shortest  fa t igue l i ves  obtained after 10 days and 30 days 

of exposure a t  70' F were not shorter than the l i v e s  of specimens tes ted  

immediately a f t e r  conditioning. 

marked ef fec t  on the  fatigue life even a f t e r  very short durations of 

Exposure t o  550' F, however, had a 
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exposure. 

to 300' F. 

A similar but less pronounced effect was noted after exposure 

In an effort to explain the rapid effect of the exposure to 

550' F by visual means, photomicrographs were made of the plastically 

strained notch material from specimens that had been exposed 30 days 

at 550' F. Inspection of the photomicrographs at a magnification of 

800 diameters revealed no apparent difference between the exposed 

miterid and the materid in the as-received condition. 

As noted by figure 8, the fatigue lives after exposure did not 

return to the no-exposure life. 

phenomenon is that the recovered structure of the metd is stronger in 

fatigue than the original structure. 

even though 

by  the recovery process. 

A possible explanation for this 

This explanation would be valid 

the compressive residual stress had been reduced to zero 

Richards (ref. 10) stated that metallurgical recovery may cause 

sufficient change in residual stresses as to alter the properties of 

the material significantly and that any structural change associated 

with the recovery may not be optically discernible. 

metallurgical recovery may occur at temperatures significantly below 

the recrystallization temperature. 

the duration of exposure, the temperature at which exposure takes place 

and the magnitude of the initial residual stress. Longer exposure 

durations, higher exposure temperatures and larger initid residual 

stresses EU tend t o  increase the rate at which the recovery process 

takes place. 

the fatigue life behavior shown in figure 8. 

The process of 

The recovery process is dependent on 

These three considerations al l  agree qualitatively with 

It is therefore reasoned 
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that  t he  behavior represented i n  figure 8 may be explained on the basis 

of metallurgical recovery. 

It should be pointed out t h a t  an airplane f lying a t  Mach 3 w i l l  be 

s t ruc tura l ly  loaded during the hot portion of t he  f l i g h t .  

of stress, which a c t s  as a driving force on processes such as recovery, 

may allow a more accelerated reduction of fa t igue l i f e  than t h a t  noted 

i n  the present tests. 

a greater  reduction in the  fatigue l i f e .  

This addition 

Such an acceleration would not necessarily cause 

The poss ib i l i t y  exists that exposure t o  elevated temperature i n  

i tself  might be responsible for  a reduction in fatigue l i f e  even i n  the 

absence of residual stress. To evaluate the poss ib i l i ty ,  additional 

specimens were exposed t o  550° F f o r  30 days without having been stress 

conditioned i n i t i a l l y .  

W ~ J  c ~ q ~ ~ e d  t o  the orlgii ial  reference l i f e .  

exposed specimens w a s  s l i g h t l y  shorter than the or ig ina l  reference l i f e  

(19,000 cycles compared t o  26,000). 

reference group of specimens w a s  18,400 cycles compared t o  16,600 cycles 

f o r  the exposed specimens. 

fell within the lower half  of t h e  s c a t t e r  band of the unexposed 

specimens. 

specimens were shorter  than those of the  unexposed specimens may be 

based on two considerations. 

a deleter ious e f fec t  on the mater ia l .  

i n  s p i t e  of care i n  preparation of the specimens, some residual s t resses  

may have been inadvertently introduced; and the elevated temperature 

exposure allowed relaxat ion of the s t resses .  O f  the two considerations 

The mean fa t igue l i f e  of t h i s  group of specimens 

The inem1 l i f e  sf the 

The shortest  l i f e  of the or iginal  

Most of the l i v e s  of the exposed specimens 

An explanation f o r  the f a c t  that  the l i v e s  of the  exposed 

One i s  that the elevated temperature had 

The other explanation i s  tha t  

the l a t t e r  is probably the more reasonable explanation. 
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X* CONCIUSIONS 

An investigation of the effect  of elevated temperature on t h e  

fat igue l i v e s  of specimens containing residual  s t resses  has been made. 

Although the  investigation was carr ied out with only one type of speci- 

men and one material, the  trends noted a re  believed t o  be applicable 

t o  other specimen types and materials i n  a qual i ta t ive way. 

The following conclusions a re  supported by the present 

invest  %gat i on: 

1. The application of a single cycle of conditioning s t r e s s  t o  

the  notched specimens caused an appreciable change i n  fa t igue l i f e ;  

conditioning s t resses  of greater magnitudes caused greater changes i n  

fa t igue l i f e .  

2.  Analysis of the loca l  s t r e s s  behavior a t  the notch allowed a 

qua l i ta t ive  understanding o f  the fat igde behavior of conditioned 

specimens. 

3. The residual  s t r e s s  introduced by the conditioning cycle was 

s tab le  a t  70' F within the 30-day period of investigation as  determined 

by fat igue t e s t s .  

4. Exposure t o  moderately elevated temperature f o r  short durations 

reduced the  e f fec t  of the  i n i t i a l  conditioning stress cycle on fat igue 

l i f e .  

5.  Higher exposure temperatures caused a more rapid reduction of 

t he  effect  of conditioning on fat igue l i fe .  
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I n  1950, Stowell (ref. EL) presented an expression with which t o  

calculate  the  p l a s t i c  stress concentration factor  f o r  a c i rcu lar  hole 

i n  an i n f i n i t e  p l a t e  under tension loading. 

Ohman ( ref .  12) generalized the  Stowell expression t o  various notch 

geometries fo r  the first quarter-cycle of loading. 

Hardrath (ref. 9) have fur ther  extended Stowell's basic  approach so t h a t  

l o c a l  stresses f o r  loading subsequent t o  the first quarter-cycle may be 

calculated. 

t o  calculate  l o c a l  stresses and i s  explained below. 

I n  1953, Hardrath and 

Recently Crews and 

The procedure thus developed was used i n  the  present work 

gefieral praze0w-e consis%s of establ ishing a p lo t ted  curye of 

Kp, the p l a s t i c  stress cancentration factor,  the  relat ionship between 

and S, the ncxninal stress, 

specimen geometry according 

which is unique f o r  a given material  and 

t o  the equation: 

Combining the  Hardrath-Ohman equation: 

with equation (A-l), gives 
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Equation (A-3) i s  used t o  es tabl ish the  relat ionship between Kp 

and S. 

To es tab l i sh  the curve, values of E, i n  terms of the associated 

s t r e s s  and s t r a i n  a re  substi tuted in to  equation (A-3) which i s  then 

solved f o r  S. Equation (A-2) o r  the  denanhator  of equation (A-3) 

y ie lds  the  value of % 
S, j u s t  obtained. 

wbich is  associated with the  nominal stress, 

After es tabl ishing the  curve, one may enter  a t  a prescribed value 

K;p of nmina l  s t ress ,  read t h e  corresponding value of 

the  notch root stress, 0, by equation (A-1). 

necessary f o r  the  above calculations is  shown as  segment OA of the 

curve i n  f igure A-1. 

and determine 

The s t ress -s t ra in  curve 

The same principle  governing the above calculations for  maximum 

notch root s t r e s s  i s  used t o  calculate the residual  stress a t  the  notch 

root upon removal of the  nominal s t ress .  I n  t h i s  instance, the segment 

AB of the  curve i n  f igure A-1  is  considered. Point A becmes the 

or ig in  f o r  purposes of calculation and the  procedure i s  the same as 

t h a t  described above. 

calculat ions concerned with segment AB t o  dis t inguish them fromthe 

preceding segment so t h a t  equations (A-2) and (A-3) become, respectively 

Primes are added t o  the  nomenclature during 

d s =  
1 + (KJ - 1) G E 

(A-4) 

(A-5) 

A separate curve r e l a t ing  $ and S i s  established i n  the  above manner. 
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The procedure may be continued for  succeeding cycles of load 

application; an addi t ional  prime being added t o  the  nomenclature t o  

identi* each spec i f ic  half-cycle of loading. 

For the  present t e s t s ,  it was assumed that the curves f o r  loadings 

subsequent t o  point B had the  same shape as the segment AB whether 

loading or  unloading and no curves were obtained beyond point The 

curve shown i n  figure A - 1  i s  f o r  i n i t i a l  loading i n  tension and is 

therefore applicable t o  the present t e s t s  in which t e n s i l e  conditioning 

stresses were analyzed. 

B. 

The s t ress -s t ra in  curve shown i n  f igure A - 1  was obtained by taking 

s t r a i n  gage readings from a specimen of the type shown i n  f igure l (b ) .  

A single  s t r a i n  gage was mounted a t  t he  geometrical center of each face 

uI -4- the specker?. The t w o  g a s s  were e l e c t r i c a l l y  connected i n  series 

so tha t  the average s t r a i n  reading of the  two specimen faces was read. 

The re su l t s  of t he  calculations of l oca l  s t r e s s  a re  shown i n  

f igure A-2 a s  p lo t s  of p l a s t i c  s t r e s s  concentration factor  versus 

nominal s t ress ,  S. The lower curve i n  f igure A-2, labeled $, was 

used f o r  calculations during the f i rs t  quarter-cycle of t ens i l e  loading. 

The higher curve was used f o r  a l l  subsequent loadings. 
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Sheet 
no. 

30 

34 

3.5 

- .  

Elas t ic  
modulus, E, TUS, ksi TYS a t  0.2 percent Elongation e 

p s i  (b) 
(b 1 offset ,  ksi (b) percent ( a j  (bj 

150.4 136.9 12.5 17.2 x lo6 
151.0 136 9 12.7 16.9 x lo6 

149.1 135 - 3  12.3 16.6 x lo6 
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ConsEitGent 

Percentage 

TABm I.- SEIJ3CTED MATERIAL PROPERTIES OF IKTpLF3c 

ANNEALED Ti-8Al-lM0-1V SIIEET (0.050 GAGE) 

C Fe N A 1  V Mo H T i  

0.026 0.U. 0.11 7.9 1.0 1.1 0.003-0.006 Remainder 

a. Mechanical properties 

A 

(a) 
(b) 

Measured a f t e r  f racture  over 2-inch gage length. 
Average of 16 tests per sheet. 

b. Naminal chemical composition supplied 
by manufacturer 
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WLl3 11.- FATIGUE UFE U T A  OBTAINED FRCM NOTCHED SPECIMENS 

AFTER STRESS CQNDITIONING 

Conditioning stress, 
ks i 

Specimen 
No. 

Fatigue l i fe ,  
cycles 

Geometric mean l i fe ,  
cycles 

18,390 
20,730 
21,710 
24,320 
24,860 

34,430 
29,480 

39, 000 

None 25 300 

TC3QA42 
TC30A24 
TC30A1 
TC3OA37 
TC30A49 

20,290' 
26,360 
28,660 
34,020 
35,500 

+60 28,280 

TC30A46 
TCjOA20 

TC30A54 
TC30A88 

Tc3aAg4 

22,680 

24,290 
24,240 

24,320 
24: 650 

-60 24,030 

37,250 
38,250 
47,280 
48,390 
54,093 

+80 44,590 

144,800 

14,860 
15 , 700 
15 j 910 
16,520 
18,500 

16,250 -100 
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1 Exposure conditions 

Duration, min 

14,400 

(10 days) 

c 

Fatigue l ife,  cycles 
Specimen 
number Individual Geometric mean 

TC34A64 1191 000 
TC34A23 23,000 
TC34A88 169,259 135,300 
TC34A51 >10 

TABU IT=- FATICUE LTFE DATA OBTAINED AFlXR EXPOSURE OF 

STRESS CONDITIONED SPECDENS (100 KSI ONLY) TO 

EIEVATED TEMPERATURES 

43,200 

(30 days) 

TC34A50 >lo6 

TC34A84 185,OOO 
TC34Agl 420,548 214,560 
TC34A90 >10 ~ 

TC35Al.l 127,000 

TC35A62 103,730 
W 3 4 U  73,130 

14,400 83,500 
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Exposure conditions 
i Specimen 
I 
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Fatigue l i fe ,  cycles 

TABLE: IV.- FATIGUE LIFE DATA OBTAINED AFTER MPOSURE OF 

STFESS CONDITIONED SPECDENS (100 KSI ONLY) TO 

EIEVATED TEMPERATURES - Concluded 

TC35A55 
TC35A39 
TC35A86 

66,500 
76,620 
80,180 

I number I Individual Geometric mean Temperature, ?F i Duration, min I I 

I 
c 1 TC35A66 

i TC35A2 
~ ~ 3 3 ~ 4 2  I 
I TC35A47 

TCjgA36 

~ 360 

550 (6 hours) TC35A32 

I 

I 

! 0.1 
~ 

62,680 
38,360 

65,890 

51, L50 
57,220 60,140 

79,540 

: TC35A26 
(20 hours) I TC34A96 

i TC34A62 

60,680 
64,770 
68,730 

14,400 1 TC30A41 
i TC3OA.51 

(10 days) 1 TC3OA92 

65,150 

44,850 
45,390 45,150 
48,760 

I 58,910 I 
TC30A32 I 37,410 I 

TC34A61 
TC3OA33 

43,200 TC3OA43 

50,550 
39,330 
40,610 
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7 Outline of simulated ellipse 

Enlarged view of notch 

Figure 2.- Notched fa t igue  specimen (5 = 4). Duplex annealed 

Ti-8Al-lMo-lV sheet (0.050 gage). 
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Figure 4 .- P h o t a g r q h  o f  closed-loop servo-hydraulic fatigue testing 
mchine  arid con t ro l  console .  
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Conditioning stress, ksi  

Figure 7.- Initial local  s t r e s s  conditions during fat igue loading 
(0-70 k s i )  a f t e r  application of conditioning s t r e s s  cycle t o  
notched [q = 4) specimens of Ti-8U-lMo-lV a l loy .  
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-150 l B  
Figure A-1 .- Characteristic stress-strain curve of duplex annealed 

Ti-8AL-lMo-lV sheet (0.050 gage) . 
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